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Abstract: In the present paper we investigate local and non-local type of mathematical models of tumour invasion
with proliferation in order to understand the mechanism of the non-local tumour invasion. We consider the non-
local tumour invasion model proposed by Gerisch and Chaplain and an approximation model by expanding the
non-local term into Taylor series, which is closely related to Chaplain and Lolas model describing the local tumour
invasion. We prove the global existence in time and asymptotic profile of the solution to the initial boundary value
problem for the approximation model in one spacial dimension, by applying known mathematical results of the
local tumour invasion model. Finally we show by computer simulations of the approximation model, which are
verified by our mathematical analysis, the time dependent change of the non-local tumour invasion process and
observe the relationship between the value of Taylor coefficients and the tumour cell density or so.

Key–Words:Non-local model, mathematical analysis, tumour invasion, Taylor expansion, computational simula-
tion.

1 Introduction

The tissue invasion by tumour is one of the hall-
marks of cancer. For the better understanding of this
phenomena mathematical models of cancer invasion
of tissue:local and non-local models are considered,
and the effect of cell-cell and cell-matrix adhesion
is investigated through the models by a number of
authors([2][5]-[7], further references therein).

In [7] Gerisch and Chaplain proposed a math-
ematical model of non-local tumour invasion(cf.
[6]):(CG)

∂n

∂t
= ∇ · [D1∇n− nA{u(t, ·)}] + µ1n(1− n− v),

(1)
∂v

∂t
= −γmv + µ2(1− n− v), (2)

∂m

∂t
= ∇ · [D3∇m] + αc− λm. (3)

wheren := n(x, t) is the density of tumour cells,
v := v(x, t) is the extra cellular matrix density (ECM
density),m := m(x, t) is degradation enzymes con-
centration (MDE concentration) ,D1, D3, γ, α, λ, µ1

andµ2 are positive constants,(x, t) ∈ Ω× (0,∞), Ω
is a bounded domain inRn, with a smooth boundary
∂Ω andA{u(t, ·)} is a non-local term. The model

describes a complicated multiscale process cell-scale
evolution of the tumour and the non-local term
A{u(t, ·)}(x) is referred as the adhesion velocity. In
this paper we assume that for one spacial dimension
andµ2 = 0 it takes the integral form for ”sensing
radius”R >0, which detects the local environment of
the cell,

A{u(t, ·)}(x) = 1

R

∫ R

−R
Ω(r)g(u(t, x+ r))dr

whereΩ(r) is an odd function, for example,

Ω(r) =
1

2R
for r > 0,Ω(r) = − 1

2R
for r < 0.

We assume thatg(u(t, x)) = k1n(x, t) + k2v(x, t)
for nonnegative constantsk1, k2. From section 2 to
subsection 3.1 we deal with (GC) forg(u(t, x)) =
v(x, t) for simplicity andg(u(t, x)) = k1n(x, t) +
k2v(x, t) in subsection 3.2, which mean the effect of
cell-cell adhesion and cell-matrix adhesion.

In [3][6][7] it is shown that asR → 0 the non-
local model converges to a localised tumour invasion
model, which is the same type as Chaplain and Lolas
model describing local tumour invasion with tumour
cell proliferation. The following is the mathematical
model proposed by Chaplain and Lolas ([5]) without
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the chemotaxisterm for one spacial dimension.

(CL)



∂n

∂t
= dn

∂2n

∂x2
− γ

∂

∂x

(
n
∂v

∂x

)
+ µ1n(1− n− v)

(4)
∂v

∂t
= −ηmv + µ2v(1− n− v) (5)

∂m

∂t
= dm

∂2m

∂x2
+ αn− βm (6)

wheredn, γ, µ1, η, µ2, dm, α and β are positive
constants(cf.[4]). We have the global existence in time
and the asymptotic behaviour of solutions to (CL) in
[13]-[15],[18].

All through this paper we deal with a boundary value
problem for all the problem in one spacial dimension
satisfying initial data:
n(x, 0) = n0(x), v(x, 0) = v0(x),m(x, 0) = m0(x),
and zero-Neumann condition

∂

∂ν
n(x, t) =

∂

∂ν
v(x, t) =

∂

∂ν
m(x, t) = 0

on∂Ω× (0,∞) whereν is a outer unit normal vector.

Tumour invasion models without the non-local en-
vironment of the cell, for instance [2] [5], base the
mathematical model on generic solid tumour growth,
which for simplicity they assume is at the avascular
stage. While most tumours are asymptomatic at this
stage, it is still possible for cells to escape and mi-
grate to the lymph nodes and for the more aggressive
tumours to invade.

They assume that the tumour cells produce MDEs
which degrade the ECM locally and that the ECM
responds by producing endogeneous inhibitors (e.g.,
TIMPs). The ECM degradation, as well as making
space into which tumour cells may move by sim-
ple diffusion, results in the production of molecules
which are actively attractive to tumour cells (e.g., fi-
bronectin) and which then aid in tumour cell motility.
Hence they refer to the movement of tumour cells up
a gradient of such molecules as haptotaxis and then
choose to consider tumour cell motion to be driven
only by random motility and haptotaxis in response to
adhesive or attractive gradients created by degradation
of the matrix.

Recently Gerisch and Chaplain in [7] proposed a
non-local model of tumour invasion for a single cell
population to describe a complicated multiscale pro-
cess of cell-scale evolution of the tumour and the in-
teraction between cell-cell and cell-matrix adhesion.
They investigate and explorate the model by compu-
tational simulations.

Mathematical analysis of the model is given by
Chaplain, Lachowicz, et al. [3]. However their result
is not enough to justify the model because of the re-
striction of the regularity of the solution. In fact, since
in [7] they justify the definition of the non-local term
by using Taylor expansion of the non-local term and
taking the limit of it asR → 0, they need a sufficient
regularity of the solution to realise it. Therefore in this
paper according to their way to justify the model we
consider an approximation model of (CG) by expand-
ing the non-local term into Taylor series and obtain a
desired sufficient regularity of the solution of it.

On the other hand, there are many mathematical
models which can be found in the literature describing
tumour angiogenesis, which is the early stage of tu-
mour growth (cf. [1], [23], [24], [25]). In [23] Levine
and Sleeman apply the diffusion equation provided by
Othmer and Stevens [24] to obtain the understanding
of tumour angiogenesis, which arises in the theory
of reinforced random walk. Anderson and Chaplain
[1] proposed a model for angiogenesis considered into
endothelial tip-cell migration, i.e., the model consid-
ered the motion of the cells located at the tips of the
growing sprouts. In [16, 17] a mathematical model
of glioblastoma cell migration is considered, a mathe-
matical understanding and computational simulation
are obtained based on mathematical analysis of tu-
mour angiogenesis.

Also mathematical approaches for tumour growth,
invasion and migration models are known( see [3] [8]-
[22][23][25] and [26]). Levine and Sleeman [23] and
Yang, Chen and Liu [26] studied the existence of the
time global solution and blow up solutions to a sim-
plified case of Othmer and Stevens type of the model.
Kubo et al. [8]-[22] show the time global solvability
and asymptotic behavior of the solution to mathemat-
ical models considered in [1, 2][4]-[7][16, 17][23]-
[25].

In this paper we deal with an approximation model
of the non-local invasion model (CG), which is con-
sidered by using Taylor expansion of the non-local
term. Then we obtain the existence and asymptotic
behaviour of solutions of the approximation model by
applying our known mathematical results of (CL) to
the model, which enables us to gain the understand-
ing of non-local tumour invasion and verify the com-
putational simulation. By computational simulations
we see how each of the Taylor expansion terms works
by changing the value of Taylor coefficients appro-
priately. Actually by them visualizing the asymp-
totic behaviour of the solution of the model, we can
observe the relationship and change between tumour
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cells, ECMand MDE, depending on time.

2 Approximation model

In this section we deal (CG) forg(u(t, x)) = v(x, t).

2.1 Taylor expansion of the non-local term
Since the nonlocal term is in the integral form, that
is, it is of an implicit form, it seems to be difficult to
understand how the term relates to the tumour inva-
sion phenomena. Thus by the Taylor expansion we
reduce the integral form to a differential form and (1)
is expressed by the regular form of partial differential
equation.

In the non-local term we apply Taylor expansion of
g(u(t, x+ r)) atx,

g(u(t, x+ r)) =
K∑
k=0

rk

k!

dk

dxk
g(u(t, x)) + g̃K(r)

whereg̃K(r) is a remainder term. Then we have

A{u(t, ·)}(x) =
K∑
k=0

dk

dxk
g(u)Ak(R) + g̃K(r)

where Ak(R) :=
1

R

∫ R

−R

rk

k!
Ω(r)dr.

Whenk is even number considering thatΩ(r) is an
odd function

Ak(R) =
1

R
p.v.

∫ R

−R

rk

k!
Ω(r)dr = 0.

Theterms of the derivatives of odd order are remained
in the Taylor series of the non-local term. Therefore
the non-local term is expanded into Taylor series as
follows,

A{u(t, ·)} =
K∑
k=0

A2k+1(R)
d2k+1g(u)

dx2k+1
+ g̃2K+1(r),

by g(u(t, x)) = v(x, t), then we have fork =
0, 1, 2, · · ·

A2k+1
∂2k+1

∂x2k+1
g(u(t, x)) = A2k+1

∂2k+1

∂x2k+1
v(x, t).

Hence in case ofK = 0 the model is same as the lo-
cal tumour invasion model (CL) provided by Chaplain
and Lolas ([5]).

In the next subsection we define an approximation
model and in the next section show global existence
in time and asymptotic behaviour of solutions of the
initial boundary value problem for these models.

2.2 Approximation model of (CG)

By replacing the non-local term by Taylor series of
it we consider an approximation equation of (1) and

an approximation problem of (CG) by neglecting the
remainder term of Taylor series.

(CG)’



∂n

∂t
= ∇ · [D1∇n− nAK(v)] + µ1n(1− n− v),

(7)
∂v

∂t
= −γmv + µ2(1− n− v),

∂m

∂t
= ∇ · [D3∇m] + αc− λm.

whereAK(v) =
K∑
k=0

A2n+1
∂2k+1

∂x2k+1
v.

Sincethe non-local termA{u(t, ·)} is in the integral
form, it seems to be difficult to understand the inter-
action between the term and the invasion phenomena.
However in (CG)’, sinceAK(v) is of the form of lin-
ear combination of derivatives ofv, it enables us to
investigate the the effect of the non-local term on the
invasion phenomena more clearly.
Since for any integerk ≥ 1
∂n

∂t
= ∇ · [D1∇n− nAk(v)] + µ1n(1− n− v) (8)

is of a regular form of partial differential equation, we
can proceed the mathematical analysis of (CG)’ by
applying the known results of local tumour invasion
models obtained already.
Also it is shown that asR → 0 the non-local model

(CG)’ converges to a localised tumour invasion model,
which is same type of Chaplain and Lolas [5] describ-
ing local tumour invasion(cf. [3][6][7]). In fact, it is
easily seen thatA3 ∼ A2K+1 → 0 andA1 → 1 as
R → 0. In this sense (CL) is a local model of (CG),
and (CG) is a generalized model of (CL).

3 Existence theorem
In the subsection 3.1 we deal with (CG)’ for
g(u(t, x)) = v(x, t) and in the subsection 3.2
g(u(t, x)) = k1n(x, t) + k2v(x, t).

3.1 g(u(t, x)) = v(x, t)

In [13]-[15],[18] we show the global existence in time
and the asymptotic behaviour of the solution to (CL).

Theorem 1 (Existence theorem of (CL))For suffi-
ciently smooth initial data{n0(x), v0(x),m0(x)} and
m ≥ [n/2] + 3, assume that∥n0 − 1∥2m+1 is suf-
ficiently small, then there are classical solutions of
(CL)): {n(x, t), v(x, t),m(x, t)} such that they satisfy
the following asymptotic behaviour

lim
t→∞

||n(x, t)− 1||m−1 = 0, lim
t→∞

v(x, t) = 0.
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By applyingTheorem 1 to (CG)’ we obtain existence
of solutions to (CG)’. In fact, first we consider the case
of K = 0, i.e.,

AK(u) = A1
∂

∂x
v,

then we see that (CG)’ coincides with (CL) forµ2 =
0. Hence by Theorem 1 we obtain the existence theo-
rem of (CG)’ forK = 0.
In the same way by applying Theorem 1 for (CG)’
with Ai from i = 1 to i = K we have the global
existence in time and the asymptotic behaviour of the
solution to (CG)’ by takingm ≥ [n/2] + 3 + 2K in
the statement of Theorem 1.

Theorem 2 (Existence theorem of (CG)’)For suffi-
ciently smooth initial data{n0(x), v0(x),m0(x)} and
m ≥ [n/2] + 3 + 2K, assume that∥n0 − 1∥2m+1 is
sufficiently small, then there are classical solutions of
(CG)’: {n(x, t), v(x, t),m(x, t)} such that they sat-
isfy the following asymptotic behaviour

lim
t→∞

n(x, t) = 1, lim
t→∞

v(x, t) = 0.

3.2 g(u(t, x)) = k1n(x, t) + k2v(x, t)

We further deal with the tumour invasion model addi-
tionally considering into the effect of cell-cell adhe-
sion in (CL) as follows.

(CL)’



∂n

∂t
= dn

∂2n

∂x2
− γ

∂

∂x

(
n
∂v

∂x

)
− a1

∂

∂x

(
n
∂n

∂x

)
+µ1n(1− n− v) (4)′

∂v

∂t
= −ηmv + µ2v(1− n− v) (5)

∂m

∂t
= dm

∂2m

∂x2
+ αn− βm (6)

wherea1
∂

∂x

(
n
∂n

∂x

)
is a cell-cell adhesion term and

a1 is a positive constant.
When we derive the energy estimate of (CL)’ the dif-
fusion term−dnnxx is dominant to the cell-cell adhe-
sion terma1 (nnx)x in the following sense. For the

L2(Ω) inner product of−dn
∂2n

∂x2
+ a1 (nnx)x with n,

we have (
−dn

∂2n

∂x2
+ a1

∂

∂x

(
n
∂n

∂x

)
, n

)

=

(
dn

∂n

∂x
− a1

(
n
∂n

∂x

)
,
∂n

∂x

)
if |n| ∼ 1 anddn > a1

> C∥nx∥2

whereC > 0. In fact, we see that|n| ∼ 1 is satisfied
by the asymptotic behaviour ofu in Theorem 1. This
inequality implies that we can derive the same type
of the energy estimate of (CL)’ as (CL), which gives
the same type of existence theorem as Theorem 1 (see
[13]-[15],[18]).

Theorem 3 (Existence theorem of (CL)’) Assume
that dn > a1 in addition to the assumption of
Theorem 1, then the same conclusion as obtained in
Theorem1 holds.

By the same argument as in the subsection 3.1 ap-
plying Theorem 3 to (CG)’, we obtain the existence
theorem of (CG)’ forg(u) = γv + a1u, which is the
same type of Theorem 2. Since we can takeγ, a1 ar-
bitrary, we obtain the following result.

Theorem 4 (Existence theorem of (CG)’ )Assume

that D1 > k1

K∑
k=0

A2n+1 in addition to the as-

sumpution of Theorem 2, then the same conclusion as
obtained in Theorem 2 holds.

4 Computational simulations

Since we obtain the existence and asymptotic be-
haviour of the solution in Theorem 2 , it essentially
verifies the following computational simulations. We
show the computer simulations of the following prob-
lem.

(CG)′4



∂n

∂t
= D1

∂2n

∂x2
− ∂

∂x
(nA4(v))

+µ1n(1− n− v),
∂v

∂t
= −γmv + µ2(1− n− v),

∂m

∂t
= D3

∂2m

∂x2
+ αcv − λm.

In the following figures we show the computational
simulations of (CG)’4 for A4(k1n + k2v), in case
k2 = 0 describes cell-cell adhesion and in casek1 = 0
cell-matrix adhesion. We observe tumour cell pro-
liferation, migration and interactions between the tu-
mour and the surrounding tissue: tumour cell density
(thick line), ECM density (thin line), and MDE con-
centration (dotline), taking A1, A3 from 0 to 10−1

andA5 = 8.33 × 10−13, A7 = 1.98 × 10−18, A9 =
2.76× 10−24 at t = 0, 0.35, 0.7, 1.05 and 1.4.

The parameter values ofD1, γ,D3, µ1, µ2, α and
λ are as follows in the simulation except for 4.1.2.
D1 = 0.0085, γ = 10, D3 = 0.0001, µ1 = 0.1, µ2 =
0.00001, α = 0.1, andλ = 0.1.
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4.1 g(u(t, x)) = u+ 2v

4.1.1 D1 = 0.0085

t = 0

t = 0.35

t = 0.7

t = 1.05

t = 1.4
A1 = 0.01, A3 = 1.67× 10−5,

A5 = 8.33× 10−13,A7 = 1.98× 10−18, A9 =
2.76× 10−24

Fig.1: The three components are very stable in the
time dependent simulation. Therefore in the below,
based on the values ofA1 ∼ A9 taking as above,
changing the values ofA1, A3 appropriately we ob-
serve the relationship between tumour cell density and
the value ofA1 ∼ A9 at t = 0.7.

(1) t = 0.7,
A1 = 0.01, A3 = 1.67× 10−5

(2) t = 0.7
A1 = 0.01, A3 = 1.67× 10−7

Fig.2: We takeA3 = 1.67 × 10−5 in (1) two times
the value in (2). Compared with the two figures, it is
observed that the tumour cell density increases around
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the boundaryon ECM meeting the tumour cell asA3

increases.

t = 0.7
A1 = 0.02, other coefficients are same as

in Fig.2-(1)
Fig.3: We takeA1 = 0.02 two times the value ofA1

in Figure 2-(1). Compared with two figures, it is ob-
served that increase ofA1 forms a peak of tumour cell
density inside ECM.

t = 0.7
A3 = 0, other coefficients are same as in Fig.2-(1).

Fig.4: The above figure is almost same as Fig.2-
(2). Compared to Figure 2-(1), it is observed thatA3

mainly makes the tumour cell density increase around
the boundary on ECM meeting the tumour cell as they
increase. TakingA5 ∼ A9 larger appropriately, the
simulation become more stable.

4.1.2 D1 = 0.03

In this subsection we takeD1 = 0.03, and other pa-
rametersγ,D3, µ1, µ2, α, andλ same as 4.1.1. In this

caseD1 >
K∑
k=0

A2n+1 is satisfied. Hence Theorem 4

guarantees the existence of the time global solution of
(CG)′4.

t = 0

t = 0.35

t = 0.7

t = 1.05
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t = 1.4
A1 = 0.01, A3 = 1.67× 10−5

Fig.1: Compared to Fig.1 of 4.1.1 we observe the
curve of tumour cell population more diffusively and
smoothly changes along the x-axis .

(1) t = 0.7,
A1 = 0.01, A3 = 1.67× 10−5

(2) t = 0.7
A1 = 0.01, A3 = 1.67× 10−7

Fig.2: The same observation of the relationship be-
tween the figures (1), (2) andA3 as in Fig.2 of 4.1.1
holds true.

t = 0.7
A1 = 0.02, other coefficients are same as

in Fig.2-(1)

Fig.3: The same observation as in Fig.3 of 4.1.1 holds.

t = 0.7
A3 = 0, other coefficients are same as in Fig.2-(1).

Fig.4: The same observation as in Fig.4 of 4.1.1 holds.

4.2 g(u) = 0.5u+ 2v

D1 > 0.5
K∑
k=0

A2n+1 is satisfied. Hence Theorem 4

guarantees the existence of the time global solution of
(CG)′4.

t = 0
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t = 0.35

t = 0.7

t = 1.05

t = 1.4
A1 = 0.01, A3 = 1.67× 10−5

Fig.1: The effect of cell-cell adhesion is one half of
4.1.1. As a result the slope of the tumour cell density

decreases more slowly along the x-axis than Fig.1of
4.1.1.

(1) t = 0.7,
A1 = 0.01, A3 = 1.67× 10−5

(2) t = 0.7
A1 = 0.01, A3 = 1.67× 10−7

Fig.2: The same observation as in Fig.2 of 4.1.1 holds
true.

t = 0.7
A1 = 0.02, other coefficients are same as

in Fig.2-(1)

Fig.3: We takeA1 = 0.02 two times the value of
Fig.2-(1). A larger peak than Fig.3 of 4.1.1 appears.
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t = 0.7
A3 = 0, other coefficients are same as in Fig.2-(1).

Fig.4: The same observation as in Fig.4 of 4.1.1 holds.

4.3 g(u(t, x)) = 2v

Theorem 2 guarantees the existence of the time global
solution of(CG)′4.

t = 0

t = 0.35

t = 0.7

t = 1.05

t = 1.4
A1 = 0.01, A3 = 1.67× 10−5

Fig.1: The slope of tumour cell density decreases
more slowly than 4.1- 4.2.

(1) t = 0.7,
A1 = 0.01, A3 = 1.67× 10−5
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(2) t = 0.7
A1 = 0.01, A3 = 1.67× 10−7

Fig.2: The same observation as in Fig.2 of 4.1.1 holds.

t = 0.7
A1 = 0.02, other coefficients are same as

in Fig.1-(1)

Fig.3: A larger peak than Fig.3 of 4.1-4.2 appears.

t = 0.7
A3 = 0, other coefficients are same as in Fig.2-(1).

Fig.4: The same observation as in Fig.4 of 4.1.1 holds.

5 Conclusions

In the non-local model we gain the understanding of
the multiscale process of tumour invasion and the in-
teraction between cell-cell and cell-matrix adhesion,
by the existence of the time global solution and its

asymptotic behaviour of the model and computational
simulations in section 4 in a certain region of param-
eter space. For this purpose first we show the ex-
istence of the solution and asymptotic behaviour of
(CL)’, which describes local cell-cell adhesion and
cell-matrix adhesion. Expanding the non-local term
into Taylor series we consider an approximation prob-
lem (CG)’ of (CG) and applying our existence theo-
rem of (CL)’ we show rigorously the global existence
in time and the asymptotic behavior of solutions of it.
We obtain a mathematical understanding of (CG)’ and
it guarantees the validity of computational simulations
of (CG)’ that qualitatively replicate the complicated
morphologies of non-local invasive tumour.
Numerical experiments in section 4 imply that as the

value of some Taylor coefficients increases the density
of tumour cell increases around the boundary of ECM
intersecting tumour cell, which implies that the non-
local term works asdissipation andviscosity in the
tumour invasion phenomena. In Taylor coefficients
of the non-local termA1, A3 have a crucial role of
the stability and the behaviour of the tumour cell den-
sity in the simulation. Especially, in the computational
simulation it is observed that the increase ofA1 makes
the peak of tumour cells larger inside of ECM and if
A3 increases the tumour cell density around the inter-
section of ECM and tumour cells increases.
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